enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    As an illustration of this, the parity cycle (1 1 0 0 1 1 0 0) and its sub-cycle (1 1 0 0) are associated to the same fraction ⁠ 5 / 7 ⁠ when reduced to lowest terms. In this context, assuming the validity of the Collatz conjecture implies that (1 0) and (0 1) are the only parity cycles generated by positive whole numbers (1 and 2 ...

  3. 3x + 1 semigroup - Wikipedia

    en.wikipedia.org/wiki/3x_+_1_semigroup

    In algebra, the 3x + 1 semigroup is a special subsemigroup of the multiplicative semigroup of all positive rational numbers. [1] The elements of a generating set of this semigroup are related to the sequence of numbers involved in the still open Collatz conjecture or the "3 x + 1 problem". The 3 x + 1 semigroup has been used to prove a weaker ...

  4. Kruskal's tree theorem - Wikipedia

    en.wikipedia.org/wiki/Kruskal's_tree_theorem

    The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree T with a root, and given vertices v, w, call w a successor of v if the unique path from the root to w contains v, and call w an immediate successor of v if additionally the path from v to w contains no other vertex.

  5. Tree of primitive Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Tree_of_primitive...

    Berggrens's tree of primitive Pythagorean triples. In mathematics, a tree of primitive Pythagorean triples is a data tree in which each node branches to three subsequent nodes with the infinite set of all nodes giving all (and only) primitive Pythagorean triples without duplication. A Pythagorean triple is a set of three positive integers a, b ...

  6. Stern–Brocot tree - Wikipedia

    en.wikipedia.org/wiki/Stern–Brocot_tree

    Stern–Brocot tree. In number theory, the Stern–Brocot tree is an infinite complete binary tree in which the vertices correspond one-for-one to the positive rational numbers, whose values are ordered from the left to the right as in a search tree. The Stern–Brocot tree was introduced independently by Moritz Stern (1858) and Achille Brocot ...

  7. AOL Mail

    mail.aol.com

    You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.

  8. Calkin–Wilf tree - Wikipedia

    en.wikipedia.org/wiki/Calkin–Wilf_tree

    Calkin–Wilf tree. In number theory, the Calkin–Wilf tree is a tree in which the vertices correspond one-to-one to the positive rational numbers. The tree is rooted at the number 1, and any rational number expressed in simplest terms as the fraction ⁠a b⁠ has as its two children the numbers ⁠a a + b⁠ and ⁠a + b b⁠.

  9. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1 [1][2] and some (as did Fibonacci) from 1 ...