Search results
Results from the WOW.Com Content Network
In chemistry, chemical stability is the thermodynamic stability of a chemical system, in particular a chemical compound or a polymer. [1]Thermodynamic stability occurs when a system is in its lowest energy state, or in chemical equilibrium with its environment.
It is a form of fluid instability found in thermally stratified atmospheres in which a colder fluid overlies a warmer one. When an air mass is unstable, the element of the air mass that is displaced upwards is accelerated by the pressure differential between the displaced air and the ambient air at the (higher) altitude to which it was displaced.
The air within an inversion aloft is very stable with very little vertical motion. Any rising parcel of air within the inversion soon expands, thereby adiabatically cooling to a lower temperature than the surrounding air and the parcel stops rising. Any sinking parcel soon compresses adiabatically to a higher temperature than the surrounding ...
As a result of the latent heat that is released during water vapor condensation, moist air has a relatively lower adiabatic lapse rate than dry air. This makes moist air generally less stable than dry air (see convective available potential energy [CAPE]). The dry adiabatic lapse rate (for unsaturated air) is 3 °C (5.4 °F) per 1,000 vertical ...
In chemistry, the term chemically inert is used to describe a substance that is not chemically reactive.From a thermodynamic perspective, a substance is inert, or nonlabile, if it is thermodynamically unstable (positive standard Gibbs free energy of formation) yet decomposes at a slow, or negligible rate.
The dianion can also be considered as two fused cyclopentadienyl rings, and has been used as a ligand in organometallic chemistry to stabilise many types of mono- and bimetallic complexes, including those containing multiple metal-metal bonds, and anti-bimetallics with extremely high levels of electronic communication between the centers.
This list is sorted by boiling point of gases in ascending order, but can be sorted on different values. "sub" and "triple" refer to the sublimation point and the triple point, which are given in the case of a substance that sublimes at 1 atm; "dec" refers to decomposition. "~" means approximately.
An even number of protons or neutrons is more stable (higher binding energy) because of pairing effects, so even–even nuclides are much more stable than odd–odd. One effect is that there are few stable odd–odd nuclides: in fact only five are stable, with another four having half-lives longer than a billion years.