Search results
Results from the WOW.Com Content Network
Lyapunov functions are used extensively in control theory to ensure different forms of system stability. The state of a system at a particular time is often described by a multi-dimensional vector. A Lyapunov function is a nonnegative scalar measure of this multi-dimensional state.
In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is
In the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory .
Lyapunov theory, a theorem related to the stability of solutions of differential equations near a point of equilibrium; Lyapunov central limit theorem, variant of the central limit theorem; Lyapunov vector-measure theorem, theorem in measure theory that the range of any real-valued, non-atomic vector measure is compact and convex
The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.
Conley's decomposition is characterized by a function known as complete Lyapunov function. Unlike traditional Lyapunov functions that are used to assert the stability of an equilibrium point (or a fixed point) and can be defined only on the basin of attraction of the corresponding attractor, complete Lyapunov functions must be defined on the whole phase-portrait.
The mathematical theory of stability of motion, founded by A. M. Lyapunov, considerably anticipated the time for its implementation in science and technology. Moreover Lyapunov did not himself make application in this field, his own interest being in the stability of rotating fluid masses with astronomical application.
Lyapunov proved that if the system of the first approximation is regular (e.g., all systems with constant and periodic coefficients are regular) and its largest Lyapunov exponent is negative, then the solution of the original system is asymptotically Lyapunov stable. Later, it was stated by O. Perron that the requirement of regularity of the ...