Search results
Results from the WOW.Com Content Network
The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.
The top electron has twice the momentum, while the bottom electron has half. Note that as the momentum increases, the phase velocity decreases down to c, whereas the group velocity increases up to c, until the wave packet and its phase maxima move together near the speed of light, whereas the wavelength continues to decrease without bound. Both ...
The de Broglie wavelength is the wavelength, λ, associated with a particle with momentum p through the Planck constant, h: =. Wave-like behavior of matter has been experimentally demonstrated, first for electrons in 1927 and for other elementary particles , neutral atoms and molecules in the years since.
For photons, this is the relation, discovered in 19th century classical electromagnetism, between radiant momentum (causing radiation pressure) and radiant energy. If the body's speed v is much less than c , then ( 1 ) reduces to E = 1 / 2 m 0 v 2 + m 0 c 2 ; that is, the body's total energy is simply its classical kinetic energy ...
Because velocity and speed are related to energy, Equation can be used to derive relationships between temperature and the speeds of gas particles. All that is needed is to discover the density of microstates in energy, which is determined by dividing up momentum space into equal sized regions.
In classical mechanics, the position and momentum variables of a particle can vary continuously, so the set of microstates is actually uncountable. In classical statistical mechanics, it is rather inaccurate to express the partition function as a sum of discrete terms.
Maxwell–Boltzmann statistics is used to derive the Maxwell–Boltzmann distribution of an ideal gas. However, it can also be used to extend that distribution to particles with a different energy–momentum relation, such as relativistic particles (resulting in Maxwell–Jüttner distribution), and to other than three-dimensional spaces.
The wavelength and frequency peaks are in bold and occur at 25.0% and 64.6% respectively. The 41.8% point is the wavelength-frequency-neutral peak (i.e. the peak in power per unit change in logarithm of wavelength or frequency).