Search results
Results from the WOW.Com Content Network
In mathematics, Scheinerman's conjecture, now a theorem, states that every planar graph is the intersection graph of a set of line segments in the plane. This conjecture was formulated by E. R. Scheinerman in his Ph.D. thesis , following earlier results that every planar graph could be represented as the intersection graph of a set of simple curves in the plane (Ehrlich, Even & Tarjan 1976).
An algebraic curve in the Euclidean plane is the set of the points whose coordinates are the solutions of a bivariate polynomial equation p(x, y) = 0.This equation is often called the implicit equation of the curve, in contrast to the curves that are the graph of a function defining explicitly y as a function of x.
For the curve y 2 = x 3 + ax 2 + bx + c (the general form of an elliptic curve with characteristic 3), the formulas are similar, with s = x P 2 + x P x Q + x Q 2 + ax P + ax Q + b / y P + y Q and x R = s 2 − a − x P − x Q. For a general cubic curve not in Weierstrass normal form, we can still define a group structure by ...
In mathematics, an implicit curve is a plane curve defined by an implicit equation relating two coordinate variables, commonly x and y. For example, the unit circle is defined by the implicit equation x 2 + y 2 = 1 {\displaystyle x^{2}+y^{2}=1} .
So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...
The values of u, v, w such that g(u, v, w) = 0 are the homogeneous coordinates of the points of the completion of the curve in the projective plane and the points of the initial curve are those such that w is not zero. An example is the Fermat curve u n + v n = w n, which has an affine form x n + y n = 1. A similar process of homogenization may ...
This proves that all points in the intersection are the same distance from the point E in the plane P, in other words all points in the intersection lie on a circle C with center E. [5] This proves that the intersection of P and S is contained in C. Note that OE is the axis of the circle. Now consider a point D of the circle C. Since C lies in ...
For simplicity in the algebraic formulation ahead, let a = b = t = 2l such that the original result in Buffon's problem is P(A) = P(B) = 1 / π . Furthermore, let N = 100 drops. Now let us examine P(AB) for Laplace's result, that is, the probability the needle intersects both a horizontal and a vertical line. We know that