enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. History of spectroscopy - Wikipedia

    en.wikipedia.org/wiki/History_of_spectroscopy

    Spectroscope of Kirchhoff and Bunsen. The systematic attribution of spectra to chemical elements began in the 1860s with the work of German physicists Robert Bunsen and Gustav Kirchhoff, [30] who found that Fraunhofer lines correspond to emission spectral lines observed in laboratory light sources. This laid way for spectrochemical analysis in ...

  3. Gustav Kirchhoff - Wikipedia

    en.wikipedia.org/wiki/Gustav_Kirchhoff

    Gustav Robert Kirchhoff (German: [ˈgʊs.taf ˈkɪʁçhɔf]; 12 March 1824 – 17 October 1887) was a German physicist, chemist and mathematican who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects.

  4. Kirchhoff's laws - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_laws

    Kirchhoff's laws, named after Gustav Kirchhoff, may refer to: Kirchhoff's circuit laws in electrical engineering; Kirchhoff's law of thermal radiation; Kirchhoff equations in fluid dynamics; Kirchhoff's three laws of spectroscopy; Kirchhoff's law of thermochemistry; Kirchhoff's theorem about the number of spanning trees in a graph

  5. Spectrochemistry - Wikipedia

    en.wikipedia.org/wiki/Spectrochemistry

    Therefore, by recognizing that each atom and molecule has its spectrum Kirchhoff and Robert Bunsen established spectroscopy as a scientific tool for probing atomic and molecular structures and founded the field of spectrochemical analysis for analyzing the composition of materials. [3] Robert Bunsen - German Chemist

  6. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    By 1859, Gustav Kirchhoff and Robert Bunsen noticed that several Fraunhofer lines (lines in the solar spectrum) coincide with characteristic emission lines identified in the spectra of heated elements. [15] [16] It was correctly deduced that dark lines in the solar spectrum are caused by absorption by chemical elements in the solar atmosphere. [17]

  7. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    This yields Kirchhoff's law: α λ = ε λ {\displaystyle \alpha _{\lambda }=\varepsilon _{\lambda }} By a similar, but more complicated argument, it can be shown that, since black-body radiation is equal in every direction (isotropic), the emissivity and the absorptivity, if they happen to be dependent on direction, must again be equal for any ...

  8. Spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Spectroscopy

    The measured spectra are used to determine the chemical composition and physical properties of astronomical objects (such as their temperature, density of elements in a star, velocity, black holes and more). [12] An important use for spectroscopy is in biochemistry. Molecular samples may be analyzed for species identification and energy content ...

  9. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    The same phenomena makes the absorptivity of incoming radiation less than 1 and equal to emissivity (Kirchhoff's law). When radiation has not passed far enough through a homogeneous medium for emission and absorption to reach thermodynamic equilibrium or when the medium changes with distance, Planck's Law and the Stefan-Boltzmann equation do ...