enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    Kirchhoff's original contribution to the physics of thermal radiation was his postulate of a perfect black body radiating and absorbing thermal radiation in an enclosure opaque to thermal radiation and with walls that absorb at all wavelengths. Kirchhoff's perfect black body absorbs all the radiation that falls upon it.

  3. Kirchhoff's laws - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_laws

    Kirchhoff's laws, named after Gustav Kirchhoff, may refer to: Kirchhoff's circuit laws in electrical engineering; Kirchhoff's law of thermal radiation; Kirchhoff equations in fluid dynamics; Kirchhoff's three laws of spectroscopy; Kirchhoff's law of thermochemistry; Kirchhoff's theorem about the number of spanning trees in a graph

  4. History of spectroscopy - Wikipedia

    en.wikipedia.org/wiki/History_of_spectroscopy

    Spectroscope of Kirchhoff and Bunsen. The systematic attribution of spectra to chemical elements began in the 1860s with the work of German physicists Robert Bunsen and Gustav Kirchhoff, [30] who found that Fraunhofer lines correspond to emission spectral lines observed in laboratory light sources. This laid way for spectrochemical analysis in ...

  5. Gustav Kirchhoff - Wikipedia

    en.wikipedia.org/wiki/Gustav_Kirchhoff

    Gustav Robert Kirchhoff (German: [ˈgʊs.taf ˈkɪʁçhɔf]; 12 March 1824 – 17 October 1887) was a German physicist, chemist and mathematican who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects.

  6. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    By 1859, Gustav Kirchhoff and Robert Bunsen noticed that several Fraunhofer lines (lines in the solar spectrum) coincide with characteristic emission lines identified in the spectra of heated elements. [15] [16] It was correctly deduced that dark lines in the solar spectrum are caused by absorption by chemical elements in the solar atmosphere. [17]

  7. Spectrochemistry - Wikipedia

    en.wikipedia.org/wiki/Spectrochemistry

    Spectrochemistry is the application of spectroscopy in several fields of chemistry. It includes analysis of spectra in chemical terms, and use of spectra to derive the structure of chemical compounds, and also to qualitatively and quantitively analyze their presence in the sample.

  8. Fraunhofer lines - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_lines

    In 1802, English chemist William Hyde Wollaston [2] was the first person to note the appearance of a number of dark features in the solar spectrum. [3] In 1814, Joseph von Fraunhofer independently rediscovered the lines and began to systematically study and measure their wavelengths. He mapped over 570 lines, designating the most prominent with ...

  9. Astronomical spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Astronomical_spectroscopy

    The Star-Spectroscope of the Lick Observatory in 1898. Designed by James Keeler and constructed by John Brashear.. Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects.