Search results
Results from the WOW.Com Content Network
Malate is acted on by malate dehydrogenase to become oxaloacetate, producing a molecule of NADH. After that, oxaloacetate will be recycled to aspartate, as transaminases prefer these keto acids over the others. This recycling maintains the flow of nitrogen into the cell. Relationship of oxaloacetic acid, malic acid, and aspartic acid
1. CO 2 is fixed to produce a four-carbon molecule (malate or aspartate). 2. The molecule exits the cell and enters the bundle sheath cells. 3. It is then broken down into CO 2 and pyruvate. CO 2 enters the Calvin cycle to produce carbohydrates. 4. Pyruvate reenters the mesophyll cell, where it is reused to produce malate or aspartate.
Oxaloacetate + 2 H + + 2 e − → Malate-0.17 [10] While under standard conditions malate cannot reduce the more electronegative NAD +:NADH couple, in the cell the concentration of oxaloacetate is kept low enough that Malate dehydrogenase can reduce NAD + to NADH during the citric acid cycle. Fumarate + 2 H + + 2 e − → Succinate +0.03 [9]
Common sources of acid in baking recipes include buttermilk, yogurt, lemon juice, and cocoa powder. Baking soda isn’t just used as as a rising agent, either. It also improves the texture and ...
In enzymology, a malate oxidase (EC 1.1.3.3) is an enzyme that catalyzes the chemical reaction (S)-malate + O 2 oxaloacetate + H 2 O 2. Thus, the two substrates of this enzyme are (S)-malate and O 2, whereas its two products are oxaloacetate and H 2 O 2.
Phosphoenolpyruvate carboxylase (also known as PEP carboxylase, PEPCase, or PEPC; EC 4.1.1.31, PDB ID: 3ZGE) is an enzyme in the family of carboxy-lyases found in plants and some bacteria that catalyzes the addition of bicarbonate (HCO 3 −) to phosphoenolpyruvate (PEP) to form the four-carbon compound oxaloacetate and inorganic phosphate: [1]
Common food acids include vinegar, citric acid, tartaric acid, malic acid, folic acid, fumaric acid, and lactic acid. Acidity regulators Acidity regulators are used to change or otherwise control the acidity and alkalinity of foods. Anticaking agents Anticaking agents keep powders such as milk powder from caking or sticking. Antifoaming agents
The reaction it catalyzes is: pyruvate + HCO − 3 + ATP → oxaloacetate + ADP + P. It is an important anaplerotic reaction that creates oxaloacetate from pyruvate. PC contains a biotin prosthetic group [1] and is typically localized to the mitochondria in eukaryotes with exceptions to some fungal species such as Aspergillus nidulans which have a cytosolic PC.