Search results
Results from the WOW.Com Content Network
One says that “the affine plane does not have a good intersection theory”, and intersection theory on non-projective varieties is much more difficult. A line on a P 1 × P 1 (which can also be interpreted as the non-singular quadric Q in P 3) has self-intersection 0, since a line can be moved off itself. (It is a ruled surface.)
In mathematics, the Fulton–Hansen connectedness theorem is a result from intersection theory in algebraic geometry, for the case of subvarieties of projective space with codimension large enough to make the intersection have components of dimension at least 1.
Intersections of the unaccented modern Greek, Latin, and Cyrillic scripts, considering only the shapes of the letters and ignoring their pronunciation Example of an intersection with sets The intersection of two sets A {\displaystyle A} and B , {\displaystyle B,} denoted by A ∩ B {\displaystyle A\cap B} , [ 3 ] is the set of all objects that ...
The intersection (red) of two disks (white and red with black boundaries). The circle (black) intersects the line (purple) in two points (red). The disk (yellow) intersects the line in the line segment between the two red points. The intersection of D and E is shown in grayish purple. The intersection of A with any of B, C, D, or E is the empty ...
This page was last edited on 5 September 2021, at 04:23 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
In algebraic geometry, the scheme-theoretic intersection of closed subschemes X, Y of a scheme W is , the fiber product of the closed immersions ,. It is denoted by X ∩ Y {\displaystyle X\cap Y} . Locally, W is given as Spec R {\displaystyle \operatorname {Spec} R} for some ring R and X , Y as Spec ( R / I ) , Spec ( R / J ...
Intersection (set theory) – Set of elements common to all of some sets; Iterated binary operation – Repeated application of an operation to a sequence; List of set identities and relations – Equalities for combinations of sets; Naive set theory – Informal set theories; Symmetric difference – Elements in exactly one of two sets
The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection. The inclusion-exclusion principle, being a generalization of the two-set case, is perhaps more clearly seen in the case of three sets, which for the sets A , B and C is given by