Search results
Results from the WOW.Com Content Network
The orbital plane is defined in relation to a reference plane by two parameters: inclination (i) and longitude of the ascending node (Ω). By definition, the reference plane for the Solar System is usually considered to be Earth's orbital plane, which defines the ecliptic, the circular path on the celestial sphere that the Sun appears to follow ...
Orbital mechanics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including both spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets.
In celestial mechanics, the orbital plane of reference (or orbital reference plane) is the plane used to define orbital elements (positions). The two main orbital elements that are measured with respect to the plane of reference are the inclination and the longitude of the ascending node .
This maneuver is also known as an orbital plane change as the plane of the orbit is tipped. This maneuver requires a change in the orbital velocity vector ( delta v ) at the orbital nodes (i.e. the point where the initial and desired orbits intersect, the line of orbital nodes is defined by the intersection of the two orbital planes).
K̂ is perpendicular to the reference plane. Orbital elements of bodies (planets, comets, asteroids, ...) in the Solar System usually the ecliptic as that plane. x̂, ŷ are in the orbital plane and with x̂ in the direction to the pericenter . ẑ is perpendicular to the plane of the orbit. ŷ is mutually perpendicular to x̂ and ẑ.
The reference plane is assumed to be the xy-plane, and the origin of longitude is taken to be the positive x-axis. k is the unit vector (0, 0, 1), which is the normal vector to the xy reference plane. For non-inclined orbits (with inclination equal to zero), ☊ is undefined.
It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular ...
Perifocal reference frames are most commonly used with elliptical orbits for the reason that the ^ coordinate must be aligned with the eccentricity vector. Circular orbits, having no eccentricity, give no means by which to orient the coordinate system about the focus.