Search results
Results from the WOW.Com Content Network
2 → C 6 H 4 Cl 2 + HCl. The reaction also affords the 1,4- and small amounts of the 1,3-isomer. The 1,4- isomer is preferred over the 1,2- isomer due to steric hindrance. The 1,3- isomer is uncommon because it is a meta- compound, while chlorine, like all halogens, is an ortho/para-director in terms of electrophilic aromatic substitution.
1,2-Dichlorobenzene or ortho-dichlorobenzene; 1,3-Dichlorobenzene or meta-dichlorobenzene; 1,4-Dichlorobenzene or para-dichlorobenzene. All three isomers are colorless chlorobenzenes with the formula C 6 H 4 Cl 2. They differ structurally based on where the two chlorine atoms are attached to the ring.
The molecular formula C 6 H 4 Cl 2 (molar mass: 147.00 g/mol) may refer to: 1,2-Dichlorobenzene; 1,3-Dichlorobenzene; 1,4-Dichlorobenzene;
Electric polarization of a given dielectric material sample is defined as the quotient of electric dipole moment (a vector quantity, expressed as coulombs*meters (C*m) in SI units) to volume (meters cubed). [1] [2] Polarization density is denoted mathematically by P; [2] in SI units, it is expressed in coulombs per square meter (C/m 2).
The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1] Note that the local electric field seen by a molecule is generally different from the macroscopic electric field that would be measured externally.
Typical dipole moments for simple diatomic molecules are in the range of 0 to 11 D. Molecules with symmetry point groups or containing inversion symmetry will not have a permanent dipole moment, while highly ionic molecular species have a very large dipole moment, e.g. gas-phase potassium bromide, KBr, with a dipole moment of 10.41 D. [3] A proton and an electron 1 Å apart have a dipole ...
Winter brings less daylight and colder temperatures, which can disrupt sleep. Seasonal Affective Disorder (SAD) is more common in winter due to the lack of sunlight, causing sleep disturbances.
The reaction field method is used in molecular simulations to simulate the effect of long-range dipole-dipole interactions for simulations with periodic boundary conditions. Around each molecule there is a 'cavity' or sphere within which the Coulomb interactions are treated explicitly.