Search results
Results from the WOW.Com Content Network
To calculate trunk volume, the tree is subdivided into a series of segments with the successive diameters being the bottom and top of each segment and segment length being equal to the difference in height between the lower and upper diameters, or if the trunk is not vertical, the segment length can be calculated using the limb length formula ...
In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: (). The trapezoidal rule works by approximating the region under the graph of the function f ( x ) {\displaystyle f(x)} as a trapezoid and calculating its area.
Given a convex quadrilateral, the following properties are equivalent, and each implies that the quadrilateral is a trapezoid: It has two adjacent angles that are supplementary, that is, they add up to 180 degrees. The angle between a side and a diagonal is equal to the angle between the opposite side and the same diagonal.
In a triangle, any arbitrary side can be considered the base. The two endpoints of the base are called base vertices and the corresponding angles are called base angles. The third vertex opposite the base is called the apex. The extended base of a triangle (a particular case of an extended side) is the line that contains the base.
Suppose that we want to solve the differential equation ′ = (,). The trapezoidal rule is given by the formula + = + ((,) + (+, +)), where = + is the step size. [1]This is an implicit method: the value + appears on both sides of the equation, and to actually calculate it, we have to solve an equation which will usually be nonlinear.
The formula for the volume of a pyramidal square frustum was introduced by the ancient Egyptian mathematics in what is called the Moscow Mathematical Papyrus, written in the 13th dynasty (c. 1850 BC): = (+ +), where a and b are the base and top side lengths, and h is the height.
[2]: p. xi Nor could they construct the side of a cube whose volume is twice the volume of a cube with a given side. [2]: p. 29 Hippocrates and Menaechmus showed that the volume of the cube could be doubled by finding the intersections of hyperbolas and parabolas, but these cannot be constructed by straightedge and compass.
The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...