enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Additive identity - Wikipedia

    en.wikipedia.org/wiki/Additive_identity

    In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element x in the set, yields x.One of the most familiar additive identities is the number 0 from elementary mathematics, but additive identities occur in other mathematical structures where addition is defined, such as in groups and rings.

  3. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a. Next we will prove the base case b = 1, that 1 commutes with everything, i.e. for all natural numbers a, we have a + 1 = 1 + a.

  4. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    In linear algebra, the identity matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1.

  5. Identity element - Wikipedia

    en.wikipedia.org/wiki/Identity_element

    Matrix addition: Zero matrix: n-by-n square matrices: Matrix multiplication: I n (identity matrix) m-by-n matrices (Hadamard product) J m, n (matrix of ones) All functions from a set, M, to itself: ∘ (function composition) Identity function: All distributions on a group, G: ∗ (convolution) δ (Dirac delta) Extended real numbers: Minimum ...

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The identity matrix I n of size n is the n-by-n matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to 0, for example, = [], = [], = [] It is a square matrix of order n, and also a special kind of diagonal matrix. It is called an identity matrix because multiplication with it leaves a matrix ...

  7. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    The property of two matrices commuting is not transitive: A matrix may commute with both and , and still and do not commute with each other. As an example, the identity matrix commutes with all matrices, which between them do not all commute. If the set of matrices considered is restricted to Hermitian matrices without multiple eigenvalues ...

  8. Identity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Identity_(mathematics)

    Visual proof of the Pythagorean identity: for any angle , the point (,) = (⁡, ⁡) lies on the unit circle, which satisfies the equation + =.Thus, ⁡ + ⁡ =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...

  9. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.