Ad
related to: tetrahedron distance from center of rotation worksheet
Search results
Results from the WOW.Com Content Network
A regular tetrahedron, an example of a solid with full tetrahedral symmetry. A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation.
Its vertex–center–vertex angle—the angle between lines from the tetrahedron center to any two vertices—is = (), denoted the tetrahedral angle. [9] It is the angle between Plateau borders at a vertex. Its value in radians is the length of the circular arc on the unit sphere resulting from centrally projecting one edge of the ...
The Reuleaux tetrahedron is the intersection of four balls of radius s centered at the vertices of a regular tetrahedron with side length s. [1] The spherical surface of the ball centered on each vertex passes through the other three vertices, which also form vertices of the Reuleaux tetrahedron.
A regular tetrahedron is invariant under twelve distinct rotations (if the identity transformation is included as a trivial rotation and reflections are excluded). These are illustrated here in the cycle graph format, along with the 180° edge (blue arrows) and 120° vertex (pink and orange arrows) rotations that permute the tetrahedron through the positions.
A rotocenter is the fixed, or invariant, point of a rotation. [3] There are two rotocenters per primitive cell. Together with double translational symmetry the rotation groups are the following wallpaper groups, with axes per primitive cell: p2 (2222): 4×2-fold; rotation group of a parallelogrammic, rectangular, and rhombic lattice.
The 6 edge lengths - associated to the six edges of the tetrahedron. The 12 face angles - there are three of them for each of the four faces of the tetrahedron. The 6 dihedral angles - associated to the six edges of the tetrahedron, since any two faces of the tetrahedron are connected by an edge.
is the distance from the center to any face plane; it may be calculated by normalizing the equation of plane above, replacing (x, y, z) with (0, 0, 0), and taking the absolute value of the result. A deltoidal icositetrahedron has its long and short edges in the ratio:
A tetrahedron is an object in three-dimensional space having four triangles as its faces. A line segment joining a vertex of a tetrahedron with the centroid of the opposite face is called a median, and a line segment joining the midpoints of two opposite edges is called a bimedian. Hence there are four medians and three bimedians.
Ad
related to: tetrahedron distance from center of rotation worksheet