Search results
Results from the WOW.Com Content Network
A totient number is a value of Euler's totient function: that is, an m for which there is at least one n for which φ(n) = m. The valency or multiplicity of a totient number m is the number of solutions to this equation. [41] A nontotient is a natural number which is not a totient number. Every odd integer exceeding 1 is trivially a nontotient.
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
The number of primitive elements in a finite field GF(q) is φ(q − 1), where φ is Euler's totient function, which counts the number of elements less than or equal to m that are coprime to m. This can be proved by using the theorem that the multiplicative group of a finite field GF( q ) is cyclic of order q − 1 , and the fact that a finite ...
The following is a table of the Bell series of well-known arithmetic functions. The Möbius function has () =.; The Mobius function squared has () = +.; Euler's totient has () =.; The multiplicative identity of the Dirichlet convolution has () =
Euler's theorem Euler's theorem states that if n and a are coprime positive integers, then a φ(n) is congruent to 1 mod n. Euler's theorem generalizes Fermat's little theorem. Euler's totient function For a positive integer n, Euler's totient function of n, denoted φ(n), is the number of integers coprime to n between 1 and n inclusive.
In mathematics, Carmichael's totient function conjecture concerns the multiplicity of values of Euler's totient function φ(n), which counts the number of integers less than and coprime to n. It states that, for every n there is at least one other integer m ≠ n such that φ ( m ) = φ ( n ).
Euler's totient function φ(n) ... The totatives under multiplication modulo n form the multiplicative group of integers modulo n. ... ISBN 978-0-387-20860-2. Zbl ...
The definition of the multiplicative order implies that, if n is the multiplicative order of b modulo p, then p is a divisor of (). The converse is not true, but one has the following. If n > 0 is a positive integer and b > 1 is an integer, then (see below for a proof) =, where