Search results
Results from the WOW.Com Content Network
A reactor vessel head for a pressurized water reactor. This structure is attached to the top of the reactor vessel body. It contains penetrations to allow the control rod driving mechanism to attach to the control rods in the fuel assembly. The coolant level measurement probe also enters the vessel through the reactor vessel head.
This system is often driven by a steam turbine to provide enough water to safely cool the reactor if the reactor building is isolated from the control and turbine buildings. Steam turbine driven cooling pumps with pneumatic controls can run at mechanically controlled adjustable speeds, without battery power, emergency generator, or off-site ...
Thus, this reactor design is self-regulating, meltdown is impossible, and the design is inherently safe. From a safety point of view, the design leverages the technology used in the TRIGA reactor, which uses uranium zirconium hydride (UZrH) fuel and is the only reactor licensed by the U.S. Nuclear Regulatory Commission for unattended operation.
The reactor head under inspection. Unit One is an 879 MWe pressurized water reactor supplied by Babcock & Wilcox. The reactor was shut down from 2002 until early 2004 for safety repairs and upgrades. In 2012 the reactor supplied 7101.700 GWh of electricity. [14] In 1973, two more reactors were also ordered from Babcock & Wilcox.
A BWR's containment consists of a drywell, where the reactor and associated cooling equipment is located, and a wetwell. The drywell is much smaller than a PWR containment and plays a larger role. During the theoretical leakage design basis accident, the reactor coolant flashes to steam in the drywell, pressurizing it rapidly.
Shutdown is the state of a nuclear reactor when the fission reaction is slowed significantly or halted completely. Different nuclear reactor designs have different definitions for what "shutdown" means, but it typically means that the reactor is not producing a measurable amount of electricity or heat and is in a stable condition with very low reactivity.
The pool-type reactor design of the EBR-II provides passive safety: the reactor core, its fuel handling equipment, and many other systems of the reactor are submerged under molten sodium. By providing a fluid which readily conducts heat from the fuel to the coolant, and which operates at relatively low temperatures, the EBR-II takes maximum ...
The Nuclear Waste Policy Act of 1982 established a timetable and procedure for constructing a permanent, underground repository for high-level radioactive waste by the mid-1990s, and provided for some temporary storage of waste, including spent fuel from 104 civilian nuclear reactors that produce about 19.4% of electricity there. [39]