enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isotopes of nitrogen - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_nitrogen

    Nitrogen-14 is one of the very few stable nuclides with both an odd number of protons and of neutrons (seven each) and is the only one to make up a majority of its element. Each proton or neutron contributes a nuclear spin of plus or minus spin 1/2 , giving the nucleus a total magnetic spin of one.

  3. Neutron–proton ratio - Wikipedia

    en.wikipedia.org/wiki/Neutron–proton_ratio

    The exceptions are beryllium (N/Z = 1.25) and every element with odd atomic number between 9 and 19 inclusive (though in those cases N = Z + 1 always allows for stability). Hydrogen-1 (N/Z ratio = 0) and helium-3 (N/Z ratio = 0.5) are the only stable isotopes with neutron–proton ratio under one.

  4. Isotope - Wikipedia

    en.wikipedia.org/wiki/Isotope

    A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.

  5. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.

  6. Even and odd atomic nuclei - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_atomic_nuclei

    ; spins 1, 1, 3, 1). All four of these isotopes have the same number of protons and neutrons, and they all have an odd number for their nuclear spin. The only other observationally "stable" odd–odd nuclide is 180m 73 Ta (spin 9), the only primordial nuclear isomer, which has not yet been observed to decay despite experimental attempts. [5]

  7. Oddo–Harkins rule - Wikipedia

    en.wikipedia.org/wiki/Oddo–Harkins_rule

    Each of the light elements oxygen, neon, magnesium, silicon, and sulfur, have two isotopes with even isospin (nucleon) parity. As shown in the plot above, the isotope with an equal number of protons and neutrons is one to two orders of magnitude more abundant than the isotope with even parity but two additional neutrons. This may leave open the ...

  8. Stable nuclide - Wikipedia

    en.wikipedia.org/wiki/Stable_nuclide

    Conversely, of the 251 known stable nuclides, only five have both an odd number of protons and odd number of neutrons: hydrogen-2 , lithium-6, boron-10, nitrogen-14, and tantalum-180m. Also, only four naturally occurring, radioactive odd–odd nuclides have a half-life >10 9 years: potassium-40 , vanadium-50 , lanthanum-138 , and lutetium-176 .

  9. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    To calculate the binding energy we use the formula Z (m p + m e) + N m n − m nuclide where Z denotes the number of protons in the nuclides and N their number of neutrons. We take m p = 938.272 0813 (58) MeV/ c 2 , m e = 0.510 998 9461 (30) MeV/ c 2 and m n = 939.565 4133 (58) MeV/ c 2 .