enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. False positive rate - Wikipedia

    en.wikipedia.org/wiki/False_positive_rate

    The false positive rate is calculated as the ratio between the number of negative events wrongly categorized as positive (false positives) and the total number of actual negative events (regardless of classification). The false positive rate (or "false alarm rate") usually refers to the expectancy of the false positive ratio.

  3. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    The probability of type I errors is called the "false reject rate" (FRR) or false non-match rate (FNMR), while the probability of type II errors is called the "false accept rate" (FAR) or false match rate (FMR). If the system is designed to rarely match suspects then the probability of type II errors can be called the "false alarm rate". On the ...

  4. Sensitivity and specificity - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_and_specificity

    An estimate of d′ can be also found from measurements of the hit rate and false-alarm rate. It is calculated as: d′ = Z(hit rate) − Z(false alarm rate), [15] where function Z(p), p ∈ [0, 1], is the inverse of the cumulative Gaussian distribution. d′ is a dimensionless statistic. A higher d′ indicates that the signal can be more ...

  5. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    The false positive rate (FPR) is the proportion of all negatives that still yield positive test outcomes, i.e., the conditional probability of a positive test result given an event that was not present. The false positive rate is equal to the significance level. The specificity of the test is equal to 1 minus the false positive rate.

  6. Detection error tradeoff - Wikipedia

    en.wikipedia.org/wiki/Detection_error_tradeoff

    The normal deviate mapping (or normal quantile function, or inverse normal cumulative distribution) is given by the probit function, so that the horizontal axis is x = probit(P fa) and the vertical is y = probit(P fr), where P fa and P fr are the false-accept and false-reject rates.

  7. Diagnostic odds ratio - Wikipedia

    en.wikipedia.org/wiki/Diagnostic_odds_ratio

    The log diagnostic odds ratio can also be used to study the trade-off between sensitivity and specificity [5] [6] by expressing the log diagnostic odds ratio in terms of the logit of the true positive rate (sensitivity) and false positive rate (1 − specificity), and by additionally constructing a measure, :

  8. False discovery rate - Wikipedia

    en.wikipedia.org/wiki/False_discovery_rate

    The false discovery rate (FDR) is then simply the following: [1] = = [], where [] is the expected value of . The goal is to keep FDR below a given threshold q . To avoid division by zero , Q {\displaystyle Q} is defined to be 0 when R = 0 {\displaystyle R=0} .

  9. Receiver operating characteristic - Wikipedia

    en.wikipedia.org/wiki/Receiver_operating...

    The true-positive rate is also known as sensitivity or probability of detection. [1] The false-positive rate is also known as the probability of false alarm [1] and equals (1 − specificity). The ROC is also known as a relative operating characteristic curve, because it is a comparison of two operating characteristics (TPR and FPR) as the ...