Search results
Results from the WOW.Com Content Network
PSR J0952–0607 is a massive millisecond pulsar in a binary system, located between 3,200–5,700 light-years (970–1,740 pc) from Earth in the constellation Sextans. [6] It holds the record for being the most massive neutron star known as of 2022, with a mass 2.35 ± 0.17 times that of the Sun—potentially close to the Tolman–Oppenheimer–Volkoff mass upper limit for neutron stars.
The pulsar was discovered in 2024 using the MeerKAT radio telescope. [63] M62H has a rotational period of 3.70 milliseconds, meaning it completes 270 rotations per second (270 Hz). [65] Its planetary companion has a minimum mass of 2.5 M J and a median mass of 2.83 M J, assuming a mass of 1.4 M ☉ for the pulsar. Its minimum density is of 11 g ...
The process of accretion can, in turn, transfer enough angular momentum to the neutron star to "recycle" it as a rotation-powered millisecond pulsar. As this matter lands on the neutron star, it is thought to "bury" the magnetic field of the neutron star (although the details are unclear), leaving millisecond pulsars with magnetic fields 1000 ...
PSR B1919+21 is a pulsar with a period of 1.3373 seconds [4] and a pulse width of 0.04 seconds. Discovered by Jocelyn Bell Burnell on 28 November 1967, it is the first discovered radio pulsar. [ 5 ] The power and regularity of the signals were briefly thought to resemble an extraterrestrial beacon , leading the source to be nicknamed LGM ...
An X-ray pulsar is a type of binary star system consisting of a typical star (stellar companion) in orbit around a magnetized neutron star.The magnetic field strength at the surface of the neutron star is typically about 10 8 Tesla, over a trillion times stronger than the strength of the magnetic field measured at the surface of the Earth (60 μT).
An intermediate-mass binary pulsar (IMBP) is a pulsar-white dwarf binary system with a relatively long spin period of around 10–200 ms consisting of a white dwarf with a relatively high mass of approximately . [7] The spin periods, magnetic field strengths, and orbital eccentricities of IMBPs are significantly larger than those of low mass binary pulsars (LMBPs). [7]
The Hulse–Taylor pulsar (known as PSR B1913+16, PSR J1915+1606 or PSR 1913+16) is a binary star system composed of a neutron star and a pulsar which orbit around their common center of mass. It is the first binary pulsar ever discovered.
2. The massive star explodes, leaving a pulsar that eventually slows down, turns off, and becomes a cooling neutron star. 3. The Sun-like star eventually expands, spilling material on to the neutron star. This "accretion" speeds up the neutron star's spin. 4. Accretion ends, the neutron star is "recycled" into a millisecond pulsar.