enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Control theory - Wikipedia

    en.wikipedia.org/wiki/Control_theory

    In contrast to the frequency domain analysis of the classical control theory, modern control theory utilizes the time-domain state space representation, [citation needed] a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations. To abstract from the number of inputs ...

  3. Optimal control - Wikipedia

    en.wikipedia.org/wiki/Optimal_control

    Optimal control problem benchmark (Luus) with an integral objective, inequality, and differential constraint. Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. [1]

  4. List of mathematical theories - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_theories

    Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide ... Continuum theory; Control theory;

  5. Caratheodory-π solution - Wikipedia

    en.wikipedia.org/wiki/Caratheodory-π_solution

    A Carathéodory-π solution can be applied towards the practical stabilization of a control system. [ 6 ] [ 7 ] It has been used to stabilize an inverted pendulum, [ 6 ] control and optimize the motion of robots, [ 7 ] [ 8 ] slew and control the NPSAT1 spacecraft [ 3 ] and produce guidance commands for low-thrust space missions.

  6. Linear–quadratic regulator - Wikipedia

    en.wikipedia.org/wiki/Linear–quadratic_regulator

    One of the main results in the theory is that the solution is provided by the linear–quadratic regulator (LQR), a feedback controller whose equations are given below. LQR controllers possess inherent robustness with guaranteed gain and phase margin , [ 1 ] and they also are part of the solution to the LQG (linear–quadratic–Gaussian) problem .

  7. H-infinity methods in control theory - Wikipedia

    en.wikipedia.org/wiki/H-infinity_methods_in...

    H ∞ (i.e. "H-infinity") methods are used in control theory to synthesize controllers to achieve stabilization with guaranteed performance. To use H ∞ methods, a control designer expresses the control problem as a mathematical optimization problem and then finds the controller that solves this optimization.

  8. Hamiltonian (control theory) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(control_theory)

    Inspired by—but distinct from—the Hamiltonian of classical mechanics, the Hamiltonian of optimal control theory was developed by Lev Pontryagin as part of his maximum principle. [2] Pontryagin proved that a necessary condition for solving the optimal control problem is that the control should be chosen so as to optimize the Hamiltonian. [3]

  9. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    Modern control theory, instead of changing domains to avoid the complexities of time-domain ODE mathematics, converts the differential equations into a system of lower-order time domain equations called state equations, which can then be manipulated using techniques from linear algebra. [2]