Search results
Results from the WOW.Com Content Network
In botany, a stoma (pl.: stomata, from Greek στόμα, "mouth"), also called a stomate (pl.: stomates), is a pore found in the epidermis of leaves, stems, and other organs, that controls the rate of gas exchange between the internal air spaces of the leaf and the atmosphere.
Photosynthesis depends on the diffusion of carbon dioxide (CO 2) from the air through the stomata into the mesophyll tissues. Oxygen (O 2), produced as a byproduct of photosynthesis, exits the plant via the stomata. When the stomata are open, water is lost by evaporation and must be replaced via the transpiration stream, with water taken up by ...
The stomata complex regulates the exchange of gases and water vapor between the outside air and the interior of the leaf. Typically, the stomata are more numerous over the abaxial (lower) epidermis of the leaf than the (adaxial) upper epidermis. An exception is floating leaves where most or all stomata are on the upper surface.
The permanent leaves are opposite (at right angles to the cotyledons), amphistomatic (producing stomata on both sides of the leaf), parallel-veined and ribbon-shaped. Shortly after the appearance of the foliage leaves, the apical meristem dies and meristematic activity is transferred to the periphery of the crown.
Leaf expansion is a process by which plants make efficient use of the space around them by causing their leaves to enlarge, or wither. This process enables a plant to maximize its own biomass, whether it be due to increased surface area; which enables more sunlight to be absorbed by chloroplasts, driving the rate of photosynthesis upward, or it enables more stomata to be created on the leaf ...
Marram grass has a rolled leaf that creates a localized environment of water vapour concentration within the leaf and helps to prevent water loss. The stomata sit in small pits within the curls of the structure, which makes them less likely to open and lose water. The folded leaves have hairs on the inside to slow or stop air movement, much ...
The most important benefit of CAM to the plant is the ability to leave most leaf stomata closed during the day. [9] Plants employing CAM are most common in arid environments, where water is scarce. Being able to keep stomata closed during the hottest and driest part of the day reduces the loss of water through evapotranspiration , allowing such ...
3- Water moves from the xylem into the mesophyll cells, evaporates from their surfaces and leaves the plant by diffusion through the stomata. In plants, the transpiration stream is the uninterrupted stream of water and solutes which is taken up by the roots and transported via the xylem to the leaves where it evaporates into the air/apoplast ...