Search results
Results from the WOW.Com Content Network
In 1926 John Flinders Petrie took the concept of a regular skew polygons, polygons whose vertices are not all in the same plane, and extended it to polyhedra.While apeirohedra are typically required to tile the 2-dimensional plane, Petrie considered cases where the faces were still convex but were not required to lie flat in the plane, they could have a skew polygon vertex figure.
In geometry, a skew apeirohedron is an infinite skew polyhedron consisting of nonplanar faces or nonplanar vertex figures, allowing the figure to extend indefinitely without folding round to form a closed surface. Skew apeirohedra have also been called polyhedral sponges.
A skew apeirogon in two dimensions forms a zig-zag line in the plane. If the zig-zag is even and symmetrical, then the apeirogon is regular. Skew apeirogons can be constructed in any number of dimensions. In three dimensions, a regular skew apeirogon traces out a helical spiral and may be either left- or right-handed.
A skew apeirogon in two dimensions forms a zig-zag line in the plane. If the zig-zag is even and symmetrical, then the apeirogon is regular. Skew apeirogons can be constructed in any number of dimensions. In three dimensions, a regular skew apeirogon traces out a helical spiral and may be either left- or right-handed.
Regular polyhedron. Platonic solid: Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron; Regular spherical polyhedron. Dihedron, Hosohedron; Kepler–Poinsot polyhedron (Regular star polyhedra) Small stellated dodecahedron, Great stellated dodecahedron, Great icosahedron, Great dodecahedron; Abstract regular polyhedra (Projective polyhedron)
Given a point A 0 in a Euclidean space and a translation S, define the point A i to be the point obtained from i applications of the translation S to A 0, so A i = S i (A 0).The set of vertices A i with i any integer, together with edges connecting adjacent vertices, is a sequence of equal-length segments of a line, and is called the regular apeirogon as defined by H. S. M. Coxeter.
The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [11]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon. [11]: pp. 49–50 This led to the question being posed: is it possible to construct all regular n-gons with compass and straightedge?
Coxeter also enumerated the a larger set of finite regular polyhedra in his paper "regular skew polyhedra in three and four dimensions, and their topological analogues". Just like the infinite skew polyhedra represent manifold surfaces between the cells of the convex uniform honeycombs , the finite forms all represent manifold surfaces within ...