Search results
Results from the WOW.Com Content Network
In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly. [2] [3] A rotation of axes is a linear map [4] [5] and a rigid transformation.
The case of θ = 0, φ ≠ 0 is called a simple rotation, with two unit eigenvalues forming an axis plane, and a two-dimensional rotation orthogonal to the axis plane. Otherwise, there is no axis plane. The case of θ = φ is called an isoclinic rotation, having eigenvalues e ±iθ repeated twice, so every vector is rotated through an angle θ.
In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly. [2] [3] A rotation of axes is a linear map [4] [5] and a rigid transformation.
3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]
By rotating the cube by 45° on the x-axis, the point (1, 1, 1) will therefore become (1, 0, √ 2) as depicted in the diagram. The second rotation aims to bring the same point on the positive z -axis and so needs to perform a rotation of value equal to the arctangent of 1 ⁄ √ 2 which is approximately 35.264°.
Sets of rotation axes associated with both proper Euler angles and Tait–Bryan angles are commonly named using this notation (see above for details). If each step of the rotation acts on the rotating coordinate system XYZ, the rotation is intrinsic (Z-X'-Z''). Intrinsic rotation can also be denoted 3-1-3.
The directional names are routinely associated with azimuths, the angle of rotation (in degrees) in the unit circle over the horizontal plane. It is a necessary step for navigational calculations (derived from trigonometry) and for use with Global Positioning System (GPS) receivers. The four cardinal directions correspond to the following ...
An object with an axial tilt up to 90 degrees is rotating in the same direction as its primary. An object with an axial tilt of exactly 90 degrees, has a perpendicular rotation that is neither prograde nor retrograde. An object with an axial tilt between 90 degrees and 180 degrees is rotating in the opposite direction to its orbital direction.