Search results
Results from the WOW.Com Content Network
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
An artist's rendering of the structure of a magnetosphere. 1) Bow shock. 2) Magnetosheath. 3) Magnetopause. 4) Magnetosphere. 5) Northern tail lobe. 6) Southern tail lobe. 7) Plasmasphere. Earth's magnetic field, predominantly dipolar at its surface, is distorted further out by the solar wind.
As with Earth's magnetosphere, the boundary separating the solar wind's plasma from that within Saturn's magnetosphere is called the magnetopause. [2] The magnetopause distance from the planet's center at the subsolar point [ note 1 ] varies widely from 16 to 27 R s (R s =60,330 km is the equatorial radius of Saturn).
The magnetic field of a magnetic dipole has an inverse cubic dependence in distance, so its order of magnitude at the earth surface can be approximated by multiplying the above result with (R outer core ⁄ R Earth) 3 = (2890 ⁄ 6370) 3 = 0.093 , giving 2.5×10 −5 Tesla, not far from the measured value of 3×10 −5 Tesla at the equator.
This makes Earth's surface warm enough for liquid water and life. In addition to trapping heat, the atmosphere also protects living organisms by shielding the Earth's surface from cosmic rays. [17] The magnetic field—created by the internal motions of the core—produces the magnetosphere which protects Earth's atmosphere from the solar wind ...
Data from Mariner 10 led to its discovery in 1974; the spacecraft measured the field's strength as 1.1% that of Earth's magnetic field. [10] The origin of the magnetic field can be explained by dynamo theory. [11] The magnetic field is strong enough near the bow shock to slow the solar wind, which induces a magnetosphere. [12]
A simulation of a charged particle being deflected from the Earth by the magnetosphere. Thus in the "closed" model of the magnetosphere, the magnetopause boundary between the magnetosphere and the solar wind is outlined by field lines. Not much plasma can cross such a stiff boundary. [1]
The magnetosphere contains charged particles that are trapped from the stellar wind, which then move along these field lines. As the star rotates, the magnetosphere rotates with it, dragging along the charged particles. [13] As stars emit matter with a stellar wind from the photosphere, the magnetosphere creates a torque on the ejected matter.