enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. k shortest path routing - Wikipedia

    en.wikipedia.org/wiki/K_shortest_path_routing

    The k shortest path routing problem is a generalization of the shortest path routing problem in a given network. It asks not only about a shortest path but also about next k−1 shortest paths (which may be longer than the shortest path). A variation of the problem is the loopless k shortest paths.

  3. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.

  4. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Problem 2. Find the path of minimum total length between two given nodes P and Q. We use the fact that, if R is a node on the minimal path from P to Q, knowledge of the latter implies the knowledge of the minimal path from P to R. is a paraphrasing of Bellman's Principle of Optimality in the context of the shortest path problem.

  5. Hypercube graph - Wikipedia

    en.wikipedia.org/wiki/Hypercube_graph

    Maximum lengths of snakes (L s) and coils (L c) in the snakes-in-the-box problem for dimensions n from 1 to 4. The problem of finding the longest path or cycle that is an induced subgraph of a given hypercube graph is known as the snake-in-the-box problem. Szymanski's conjecture concerns the suitability of a hypercube as a network topology for ...

  6. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    Branch and bound (BB, B&B, or BnB) is a method for solving optimization problems by breaking them down into smaller sub-problems and using a bounding function to eliminate sub-problems that cannot contain the optimal solution. It is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical ...

  7. Maximum flow problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_flow_problem

    The maximum flow problem can be seen as a special case of more complex network flow problems, such as the circulation problem. The maximum value of an s-t flow (i.e., flow from source s to sink t) is equal to the minimum capacity of an s-t cut (i.e., cut severing s from t) in the network, as stated in the max-flow min-cut theorem .

  8. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  9. Local consistency - Wikipedia

    en.wikipedia.org/wiki/Local_consistency

    For example, enforcing arc consistency on binary acyclic problems allows for telling whether the problem is satisfiable. Enforcing strong directional i {\displaystyle i} -consistency allows telling the satisfiability of problems that have induced width i − 1 {\displaystyle i-1} according to the same order.