Search results
Results from the WOW.Com Content Network
The Trachtenberg Speed System of Basic Mathematics by Jakow Trachtenberg, A. Cutler (Translator), R. McShane (Translator), was published by Doubleday and Company, Inc. Garden City, New York in 1960. [1] The book contains specific algebraic explanations for each of the above operations. Most of the information in this article is from the ...
In numerical mathematics, the gradient discretisation method (GDM) is a framework which contains classical and recent numerical schemes for diffusion problems of various kinds: linear or non-linear, steady-state or time-dependent. The schemes may be conforming or non-conforming, and may rely on very general polygonal or polyhedral meshes (or ...
Partial chronology of FDTD techniques and applications for Maxwell's equations. [5]year event 1928: Courant, Friedrichs, and Lewy (CFL) publish seminal paper with the discovery of conditional stability of explicit time-dependent finite difference schemes, as well as the classic FD scheme for solving second-order wave equation in 1-D and 2-D. [6]
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration ...
In mathematics, in the area of numerical analysis, Galerkin methods are a family of methods for converting a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions.
In mathematics, time-scale calculus is a unification of the theory of difference equations with that of differential equations, unifying integral and differential calculus with the calculus of finite differences, offering a formalism for studying hybrid systems.
Figure 1.Comparison of different schemes. In applied mathematics, the central differencing scheme is a finite difference method that optimizes the approximation for the differential operator in the central node of the considered patch and provides numerical solutions to differential equations. [1]
Basic two-dimensional Cell shapes. There are two types of two-dimensional cell shapes that are commonly used. ... For discretization error, a given mesh is a discrete ...