enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    Pallas (radius 255.5 ± 2 km), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape. Vesta and Pallas are nonetheless sometimes considered small terrestrial planets anyway by sources preferring a geophysical definition, because they do share similarities to the rocky planets of the ...

  3. Gravity of Mars - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Mars

    where G is the universal constant of gravitation (commonly taken as G = 6.674 × 10 −11 m 3 kg −1 s −2), [10] M is the mass of Mars (most updated value: 6.41693 × 10 23 kg), [11] m is the mass of the satellite, r is the distance between Mars and the satellite, and is the angular velocity of the satellite, which is also equivalent to (T ...

  4. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    It equals (3.986 004 418 ± 0.000 000 008) × 10 14 m 3 ⋅s −2. [ 4 ] The value of this constant became important with the beginning of spaceflight in the 1950s, and great effort was expended to determine it as accurately as possible during the 1960s.

  5. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  6. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 ‍ [4])

  7. List of Solar System objects by size - Wikipedia

    en.wikipedia.org/wiki/List_of_Solar_System...

    For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.

  8. Orbit of Mars - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Mars

    [1] [2] The planet orbits the Sun in 687 days [3] and travels 9.55 AU in doing so, [4] making the average orbital speed 24 km/s. The eccentricity is greater than that of every other planet except Mercury, and this causes a large difference between the aphelion and perihelion distances—they are respectively 1.666 and 1.381 AU.

  9. Mars - Wikipedia

    en.wikipedia.org/wiki/Mars

    At the bottom of the mantle lies a basal liquid silicate layer approximately 150–180 km thick. [44] [54] Mars's iron and nickel core is completely molten, with no solid inner core. [55] [56] It is around half of Mars's radius, approximately 1650–1675 km, and is enriched in light elements such as sulfur, oxygen, carbon, and hydrogen. [57] [58]