Search results
Results from the WOW.Com Content Network
Magnetic moment strength (from lower to higher orders of magnitude) Factor (m 2 ⋅A) Value Item 10 −45: 9.0877 × 10 −45 m 2 ⋅A [1] Unit of magnetic moment in the Planck system of units. 10 −27: 4.330 7346 × 10 −27 m 2 ⋅A: Magnetic moment of a deuterium nucleus 10 −26: 1.410 6067 × 10 −26 m 2 ⋅A: Magnetic moment of a proton ...
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied ...
For a sufficiently small loop of current, I, and area, A, the magnetic dipole moment is: =, where the direction of m is normal to the area in a direction determined using the current and the right-hand rule. As such, the SI unit of magnetic dipole moment is ampere meter 2. More precisely, to account for solenoids with many turns the unit of ...
The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).
Magnetic field strength: H: Strength of a magnetic field A/m L −1 I: vector field Magnetic flux density: B: Measure for the strength of the magnetic field tesla (T = Wb/m 2) M T −2 I −1: pseudovector field Magnetic moment (or magnetic dipole moment) m: The component of magnetic strength and orientation that can be represented by an ...
While the magnetic moments (the black arrows) are oriented the same for both cases of γ, the precession is in opposite directions. Spin and magnetic moment are in the same direction for γ > 0 (as for protons). Protons, neutrons, and many nuclei carry nuclear spin, which gives rise to a gyromagnetic ratio as above. The ratio is conventionally ...
Crucially, the Larmor frequency is independent of the polar angle between the applied magnetic field and the magnetic moment direction. This is what makes it a key concept in fields such as nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR), since the precession rate does not depend on the spatial orientation of the spins.
The total Hamiltonian of an atom in a magnetic field is = +, where is the unperturbed Hamiltonian of the atom, and is the perturbation due to the magnetic field: =, where is the magnetic moment of the atom. The magnetic moment consists of the electronic and nuclear parts; however, the latter is many orders of magnitude smaller and will be ...