Search results
Results from the WOW.Com Content Network
Federated learning typically applies when individual actors need to train models on larger datasets than their own, but cannot afford to share the data in itself with others (e.g., for legal, strategic or economic reasons). The technology yet requires good connections between local servers and minimum computational power for each node. [3]
Generative artificial intelligence (generative AI, GenAI, [165] or GAI) is a subset of artificial intelligence that uses generative models to produce text, images, videos, or other forms of data. [ 166 ] [ 167 ] [ 168 ] These models learn the underlying patterns and structures of their training data and use them to produce new data [ 169 ...
Federated learning is an adapted form of distributed artificial intelligence to training machine learning models that decentralizes the training process, allowing for users' privacy to be maintained by not needing to send their data to a centralized server. This also increases efficiency by decentralizing the training process to many devices.
Artificial intelligence is used in astronomy to analyze increasing amounts of available data [160] [161] and applications, mainly for "classification, regression, clustering, forecasting, generation, discovery, and the development of new scientific insights" for example for discovering exoplanets, forecasting solar activity, and distinguishing ...
Artificial Intelligence Markup Language (AIML) [11] is an XML dialect [12] for use with Artificial Linguistic Internet Computer Entity (A.L.I.C.E.)-type chatterbots. Planner is a hybrid between procedural and logical languages. It gives a procedural interpretation to logical sentences where implications are interpreted with pattern-directed ...
In artificial intelligence, symbolic artificial intelligence (also known as classical artificial intelligence or logic-based artificial intelligence) [1] [2] is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. [3]
A Tsetlin machine is a form of learning automaton collective for learning patterns using propositional logic. Ole-Christoffer Granmo created [1] and gave the method its name after Michael Lvovitch Tsetlin, who invented the Tsetlin automaton [2] and worked on Tsetlin automata collectives and games. [3]
A Decade Survey of Transfer Learning (2010–2020)- IEEE Transactions on Artificial Intelligence; A Survey on Symbolic Knowledge Distillation of Large Language Models- IEEE Transactions on Artificial Intelligence; Neurosymbolic Reinforcement Learning and Planning: A Survey- IEEE Transactions on Artificial Intelligence