Search results
Results from the WOW.Com Content Network
Template: Functions. ... Download as PDF; Printable version; In other projects ... Function; x ↦ f (x) History of the function concept; Types by domain and codomain ...
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
Hypercomplex function: a function whose domain is hypercomplex (e.g. quaternions, octonions, sedenions, trigintaduonions etc.) p-adic function: a function whose domain is p-adic. Linear function; also affine function. Convex function: line segment between any two points on the graph lies above the graph. Also concave function.
linewidths: different line widths may be defined for each series of data with csv, if set to 0 with "showSymbols" results with points graph, eg.: linewidths=1, 0, 5, 0.2; showSymbols: show symbol on data point for line graphs, if a number is provided, the symbol size (default 2.5) may be defined for each data series, eg.: showSymbols=1, 2, 3, 4
If f : X → Y is any function, then f ∘ id X = f = id Y ∘ f, where "∘" denotes function composition. [4] In particular, id X is the identity element of the monoid of all functions from X to X (under function composition). Since the identity element of a monoid is unique, [5] one can alternately define the identity function on M to
In the mathematical field of real analysis, a simple function is a real (or complex)-valued function over a subset of the real line, similar to a step function. Simple functions are sufficiently "nice" that using them makes mathematical reasoning, theory, and proof easier. For example, simple functions attain only a finite number of values.
These are all examples of multivalued functions that come about from non-injective functions. Since the original functions do not preserve all the information of their inputs, they are not reversible. Often, the restriction of a multivalued function is a partial inverse of the original function.