Search results
Results from the WOW.Com Content Network
In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system. [1] [note 1] The time constant is the main characteristic unit of a first-order LTI system. It gives speed of the response.
In the International System of Units (SI), the unit of time is the second (symbol: s). It has been defined since 1967 as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom", and is an SI base unit. [12]
For example, the atomic mass constant is exactly known when expressed using the dalton (its value is exactly 1 Da), but the kilogram is not exactly known when using these units, the opposite of when expressing the same quantities using the kilogram.
Time constant: = /, the time for the amplitude to decrease by the factor of e. Half-life is the time it takes for the exponential amplitude envelope to decrease by a factor of 2. It is equal to ln ( 2 ) / λ {\displaystyle \ln(2)/\lambda } which is approximately 0.693 / λ {\displaystyle 0.693/\lambda } .
A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that cannot be explained by a theory and therefore must be measured experimentally. It is distinct from a mathematical constant , which has a fixed numerical value, but does not directly involve any physical measurement.
Half-life (symbol t ½) is the time required for a quantity (of substance) to reduce to half of its initial value.The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive.
plasma physics (ratio of a resistive time to an Alfvén wave crossing time in a plasma) Perveance: K = charged particle transport (measure of the strength of space charge in a charged particle beam) Pierce parameter
rise time (10% to 90%) In more complicated circuits consisting of more than one resistor and/or capacitor, the open-circuit time constant method provides a way of approximating the cutoff frequency by computing a sum of several RC time constants.