Search results
Results from the WOW.Com Content Network
Corner quotes, also called “Quine quotes”; for quasi-quotation, i.e. quoting specific context of unspecified (“variable”) expressions; [4] also used for denoting Gödel number; [5] for example “⌜G⌝” denotes the Gödel number of G. (Typographical note: although the quotes appears as a “pair” in unicode (231C and 231D), they ...
An interpretant (or interpretant sign) is the sign's more or less clarified meaning or ramification, a kind of form or idea of the difference which the sign's being true or undeceptive would make. (Peirce's sign theory concerns meaning in the broadest sense, including logical implication, not just the meanings of words as properly clarified by ...
Even when a sign represents by a resemblance or factual connection independent of interpretation, the sign is a sign only insofar as it is at least potentially interpretable by a mind and insofar as the sign is a determination of a mind or at least a quasi-mind, that functions as if it were a mind, for example in crystals and the work of bees ...
In classical logic, disjunctive syllogism [1] [2] (historically known as modus tollendo ponens (MTP), [3] Latin for "mode that affirms by denying") [4] is a valid argument form which is a syllogism having a disjunctive statement for one of its premises.
A syllogism (Ancient Greek: συλλογισμός, syllogismos, 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.
Reductio ad absurdum, painting by John Pettie exhibited at the Royal Academy in 1884. In logic, reductio ad absurdum (Latin for "reduction to absurdity"), also known as argumentum ad absurdum (Latin for "argument to absurdity") or apagogical argument, is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction.
DeepSeek astonished the sector two weeks ago by releasing a reasoning model called R1 that could match o1’s performance in many tasks, despite the fact that it cost a fraction as much to train.
In logical argument and mathematical proof, the therefore sign, ∴, is generally used before a logical consequence, such as the conclusion of a syllogism. The symbol consists of three dots placed in an upright triangle and is read therefore. While it is not generally used in formal writing, it is used in mathematics and shorthand.