Search results
Results from the WOW.Com Content Network
Field lines depicting the electric field created by a positive charge (left), negative charge (center), and uncharged object (right). A field line is a graphical visual aid for visualizing vector fields. It consists of an imaginary integral curve which is tangent to the field vector at each point along its length.
In terms of the underlying linear algebra, a point belongs to a line if the inner product of the vectors representing the point and line is zero. The lines can be classified into three types. On three of the lines the binary triples for the points have the 0 in a constant position: the line 100 (containing the points 001, 010, and 011) has 0 in ...
In mathematics, the Conway polynomial C p,n for the finite field F p n is a particular irreducible polynomial of degree n over F p that can be used to define a standard representation of F p n as a splitting field of C p,n. Conway polynomials were named after John H. Conway by Richard A. Parker, who was the first to define them and compute ...
Field lines of a vector field v, around the boundary of an open curved surface with infinitesimal line element dl along boundary, and through its interior with dS the infinitesimal surface element and n the unit normal to the surface. Top: Circulation is the line integral of v around a closed loop C. Project v along dl, then sum.
The index is not defined at any non-singular point (i.e., a point where the vector is non-zero). It is equal to +1 around a source, and more generally equal to (−1) k around a saddle that has k contracting dimensions and n−k expanding dimensions. The index of the vector field as a whole is defined when it has just finitely many zeroes. In ...
The Fano plane, the projective plane over the field with two elements, is one of the simplest objects in Galois geometry.. Galois geometry (named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois field). [1]
In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral.
A field is a commutative ring (F, +, *) in which 0 ≠ 1 and every nonzero element has a multiplicative inverse. In a field we thus can perform the operations addition, subtraction, multiplication, and division. The non-zero elements of a field F form an abelian group under multiplication; this group is typically denoted by F ×;