Search results
Results from the WOW.Com Content Network
A circle with an equilateral chord (red). One sixtieth of this arc is a degree. Six such chords complete the circle. [6] The original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year.
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.
All of the trigonometric functions of the angle θ (theta) can be constructed geometrically in terms of a unit circle centered at O. Sine function on unit circle (top) and its graph (bottom) In this illustration, the six trigonometric functions of an arbitrary angle θ are represented as Cartesian coordinates of points related to the unit circle.
In trigonometry, the gradian – also known as the gon (from Ancient Greek γωνία (gōnía) 'angle'), grad, or grade [1] – is a unit of measurement of an angle, defined as one-hundredth of the right angle; in other words, 100 gradians is equal to 90 degrees.
In the case of degrees of angular arc, the degree symbol follows the number without any intervening space, e.g. 30°.The addition of minute and second of arc follows the degree units, with intervening spaces (optionally, non-breaking space) between the sexagesimal degree subdivisions but no spaces between the numbers and units, for example 30° 12 ′ 5″.
The radian is the (derived) unit of angular measurement in the SI. degree: 360: 1° The degree, denoted by a small superscript circle (°), is 1/360 of a turn, so one turn is 360°. One advantage of this old sexagesimal subunit is that many angles common in simple geometry are measured as a whole number of degrees.
English: Some common angles (multiples of 30 and 45 degrees) and the corresponding sine and cosine values shown on the Unit circle.The angles (θ) are given in degrees and radians, together with the corresponding intersection point on the unit circle, (cos θ, sin θ).
The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.