Search results
Results from the WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Diagram showing a yeast cell Several yeasts, in particular S. cerevisiae and S. pombe , have been widely used in genetics and cell biology, largely because they are simple eukaryotic cells, serving as a model for all eukaryotes, including humans, for the study of fundamental cellular processes such as the cell cycle , DNA replication ...
The budding yeast, Saccharomyces cerevisiae, is a model system for eukaryotic biology in which many of the fundamental elements of polarity development have been elucidated. Yeast cells share many features of cell polarity with other organisms, but feature fewer protein components.
Yeast cells can stably exist in either a diploid or a haploid form. Both haploid and diploid yeast cells reproduce by mitosis, in which daughter cells bud from mother cells. Haploid cells are capable of mating with other haploid cells of the opposite mating type (an a cell can only mate with an α cell and vice versa) to produce a stable ...
The number of protons depends on the number of c subunits in the Fo c-ring, and it is now known that this is 10 in yeast Fo [13] and 8 for vertebrates. [14] Including one H + for the transport reactions, this means that synthesis of one ATP requires 1 + 10/3 = 4.33 protons in yeast and 1 + 8/3 = 3.67 in vertebrates .
The proposed model is that α-factor, a yeast mating pheromone binds to its analog receptor on another yeast cell promoting transcription of Fus3 and promoting mating. Fus3 further promotes Far1 which inhibits Cln1/2, activators of the cell cycle. This is representative of a coherent feedforward loop that can modeled as a hysteresis curve.