enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The integral of ds over the whole circle is just the arc length, which is its circumference, so this shows that the area A enclosed by the circle is equal to / times the circumference of the circle. Another proof that uses triangles considers the area enclosed by a circle to be made up of an infinite number of triangles (i.e. the triangles each ...

  3. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The lemma establishes an important property for solving the problem. By employing an inductive proof, one can arrive at a formula for f(n) in terms of f(n − 1).. Proof. In the figure the dark lines are connecting points 1 through 4 dividing the circle into 8 total regions (i.e., f(4) = 8).

  4. Measurement of a Circle - Wikipedia

    en.wikipedia.org/wiki/Measurement_of_a_Circle

    A page from Archimedes' Measurement of a Circle. Measurement of a Circle or Dimension of the Circle (Greek: Κύκλου μέτρησις, Kuklou metrēsis) [1] is a treatise that consists of three propositions, probably made by Archimedes, ca. 250 BCE. [2] [3] The treatise is only a fraction of what was a longer work. [4] [5]

  5. Squaring the circle - Wikipedia

    en.wikipedia.org/wiki/Squaring_the_circle

    Archimedes proved a formula for the area of a circle, according to which < <. [2] In Chinese mathematics , in the third century CE, Liu Hui found even more accurate approximations using a method similar to that of Archimedes, and in the fifth century Zu Chongzhi found π ≈ 355 / 113 ≈ 3.141593 {\displaystyle \pi \approx 355/113\approx 3. ...

  6. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is =. In the special case 𝜃 = 2 π, these formulae yield the circumference of a complete circle and area of a complete disc, respectively.

  7. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral.

  8. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that

  9. Isoperimetric inequality - Wikipedia

    en.wikipedia.org/wiki/Isoperimetric_inequality

    An elegant direct proof based on comparison of a smooth simple closed curve with an appropriate circle was given by E. Schmidt in 1938. It uses only the arc length formula, expression for the area of a plane region from Green's theorem, and the Cauchy–Schwarz inequality.