enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Special linear group - Wikipedia

    en.wikipedia.org/wiki/Special_linear_group

    In mathematics, the special linear group SL(n, R) of degree n over a commutative ring R is the set of n × n matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the general linear group given by the kernel of the determinant

  3. General linear group - Wikipedia

    en.wikipedia.org/wiki/General_linear_group

    In mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication.This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group.

  4. Linear group - Wikipedia

    en.wikipedia.org/wiki/Linear_group

    The group GL n (K) itself; The special linear group SL n (K) (the subgroup of matrices with determinant 1); The group of invertible upper (or lower) triangular matrices; If g i is a collection of elements in GL n (K) indexed by a set I, then the subgroup generated by the g i is a linear group.

  5. SL2 (R) - Wikipedia

    en.wikipedia.org/wiki/SL2(R)

    In mathematics, the special linear group SL(2, R) or SL 2 (R) is the group of 2 × 2 real matrices with determinant one: (,) = {():,,, =}.It is a connected non-compact simple real Lie group of dimension 3 with applications in geometry, topology, representation theory, and physics.

  6. Classical group - Wikipedia

    en.wikipedia.org/wiki/Classical_group

    In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special [1] automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. [2]

  7. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.

  8. Projective linear group - Wikipedia

    en.wikipedia.org/wiki/Projective_linear_group

    In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group. PGL(V) = GL(V) / Z(V)

  9. PSL (2,7) - Wikipedia

    en.wikipedia.org/wiki/PSL(2,7)

    In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane.