enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Self-similar solution - Wikipedia

    en.wikipedia.org/wiki/Self-similar_solution

    Self-similar solutions appear whenever the problem lacks a characteristic length or time scale (for example, the Blasius boundary layer of an infinite plate, but not of a finite-length plate). These include, for example, the Blasius boundary layer or the Sedov–Taylor shell. [1] [2]

  3. Rayleigh problem - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_problem

    In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.

  4. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations. [ 1 ] [ 2 ] In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments , numerical simulations or approximate methods in order to obtain useful information on the flow.

  5. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_existence...

    For example, the Navier–Stokes equations are often used to model fluid flows that are turbulent, which means that the fluid is highly chaotic and unpredictable. Turbulence is a difficult phenomenon to model and understand, and it adds another layer of complexity to the problem of solving the Navier–Stokes equations.

  6. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Arnold–Beltrami–Childress flow – an exact solution of the incompressible Euler equations. Two solutions of the three-dimensional Euler equations with cylindrical symmetry have been presented by Gibbon, Moore and Stuart in 2003. [29] These two solutions have infinite energy; they blow up everywhere in space in finite time.

  7. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    The equation of motion for Stokes flow can be obtained by linearizing the steady state Navier–Stokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the Navier–Stokes equations reduces it to the momentum balance in the Stokes equations: [1]

  8. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The solution of the equations is a flow velocity.It is a vector field—to every point in a fluid, at any moment in a time interval, it gives a vector whose direction and magnitude are those of the velocity of the fluid at that point in space and at that moment in time.

  9. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    Fluid dynamics offers a systematic structure—which underlies these practical disciplines—that embraces empirical and semi-empirical laws derived from flow measurement and used to solve practical problems. The solution to a fluid dynamics problem typically involves the calculation of various properties of the fluid, such as flow velocity ...