Search results
Results from the WOW.Com Content Network
The high limit exists for the sake of efficiency and safety. The boiler will also fire (regardless of thermostat state) when the boiler water temperature goes below a range around the low limit, ensuring that the boiler water temperature remains above a certain point. The low limit is intended for tankless domestic hot water; it ensures that ...
Departure of such a variable from its setpoint is one basis for error-controlled regulation using negative feedback for automatic control. [3] A setpoint can be any physical quantity or parameter that a control system seeks to regulate, such as temperature, pressure, flow rate, position, speed, or any other measurable attribute.
For clarity, he then described a hypothetical, but realistic variant of the experiment: If equal masses of 100 °F water and 150 °F mercury are mixed, the water temperature increases by 20 ° and the mercury temperature decreases by 30 ° (both arriving at 120 °F), even though the heat gained by the water and lost by the mercury is the same.
A control variable (or scientific constant) in scientific experimentation is an experimental element which is constant (controlled) and unchanged throughout the course of the investigation. Control variables could strongly influence experimental results were they not held constant during the experiment in order to test the relative relationship ...
A wet bulb temperature taken with air moving at about 1–2 m/s is referred to as a screen temperature, whereas a temperature taken with air moving about 3.5 m/s or more is referred to as sling temperature. A psychrometer is a device that includes both a dry-bulb and a wet-bulb thermometer.
A thermal switch (sometimes thermal reset or thermal cutout (TCO)) is a device which normally opens at a high temperature (often with a faint "plink" sound) and re-closes when the temperature drops. The thermal switch may be a bimetallic strip , often encased in a tubular glass bulb to protect it from dust or short circuit .
The thermodynamic limit is essentially a consequence of the central limit theorem of probability theory. The internal energy of a gas of N molecules is the sum of order N contributions, each of which is approximately independent, and so the central limit theorem predicts that the ratio of the size of the fluctuations to the mean is of order 1/N 1/2.
The control center sets the maintenance range—the acceptable upper and lower limits—for the particular variable, such as temperature. The control center responds to the signal by determining an appropriate response and sending signals to an effector , which can be one or more muscles, an organ, or a gland .