Search results
Results from the WOW.Com Content Network
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic.
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]
propositional logic, Boolean algebra, Heyting algebra: is false when A is true and B is false but true otherwise. may mean the same as (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).
In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called vertices (also called nodes or points ) and each of the related pairs of vertices is called an edge (also called link or line ...
The term algebra is derived from the Arabic word al-jabr meaning 'the reunion of broken parts' that he used for naming one of these methods in the title of his main treatise. [31] [32] Algebra became an area in its own right only with François Viète (1540–1603), who introduced the use of variables for representing unknown or unspecified ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
A discrete convolution can be defined for functions on the set of integers. Generalizations of convolution have applications in the field of numerical analysis and numerical linear algebra, and in the design and implementation of finite impulse response filters in signal processing. [citation needed]
The following proposition says that for any set , the power set of , ordered by inclusion, is a bounded lattice, and hence together with the distributive and complement laws above, show that it is a Boolean algebra.