Search results
Results from the WOW.Com Content Network
The time is usually based on a 12-hour clock. A method to solve such problems is to consider the rate of change of the angle in degrees per minute. The hour hand of a normal 12-hour analogue clock turns 360° in 12 hours (720 minutes) or 0.5° per minute. The minute hand rotates through 360° in 60 minutes or 6° per minute. [1]
[9] [failed verification] Each degree was subdivided into 60 minutes and each minute into 60 seconds. [10] [11] Thus, one Babylonian degree was equal to four minutes in modern terminology, one Babylonian minute to four modern seconds, and one Babylonian second to 1 / 15 (approximately 0.067) of a modern second.
The numerical values for latitude and longitude can occur in a number of different units or formats: [2] sexagesimal degree: degrees, minutes, and seconds : 40° 26′ 46″ N 79° 58′ 56″ W; degrees and decimal minutes: 40° 26.767′ N 79° 58.933′ W; decimal degrees: +40.446 -79.982; There are 60 minutes in a degree and 60 seconds in a ...
Also a casual term for a short period of time. centisecond: 10 −2 s: One hundredth of a second. decisecond: 10 −1 s: One tenth of a second. second: 1 s: SI base unit for time. decasecond: 10 s: Ten seconds (one sixth of a minute) minute: 60 s: hectosecond: 100 s: milliday: 1/1000 d (0.001 d) 1.44 minutes, or 86.4 seconds.
When this is not the case, as in astronomy or for geographic coordinates (latitude and longitude), degree measurements may be written using decimal degrees (DD notation); for example, 40.1875°. Alternatively, the traditional sexagesimal unit subdivisions can be used: one degree is divided into 60 minutes (of arc), and one minute into 60 ...
10 2: hectosecond: 100: 1.67 minutes (or 1 minute 40 seconds) 10 3: kilosecond: 1 000: 16.7 minutes (or 16 minutes and 40 seconds) 10 6: megasecond: 1 000 000: 11.6 days (or 11 days, 13 hours, 46 minutes and 40 seconds) 10 9: gigasecond: 1 000 000 000: 31.7 years (or 31 years, 252 days, 1 hour, 46 minutes, 40 seconds, assuming that there are 7 ...
As the apparent daily movement of the Sun is one revolution per day, that is 360° every 24 hours, and the Sun itself appears as a disc of about 0.5° in the sky, simple sundials can be read to a maximum accuracy of about one minute. Since the equation of time has a range of about 33 minutes, the difference between sundial time and clock time ...
Sometimes in official records, decimal hours were divided into tenths, or décimes, instead of minutes. One décime is equal to 10 decimal minutes, which is nearly equal to a quarter-hour (15 minutes) in standard time. Thus, "five hours two décimes" equals 5.2 decimal hours, roughly 12:30 p.m. in standard time.