Search results
Results from the WOW.Com Content Network
Deoxyribose, or more precisely 2-deoxyribose, is a monosaccharide with idealized formula H−(C=O)−(CH 2)−(CHOH) 3 −H. Its name indicates that it is a deoxy sugar, meaning that it is derived from the sugar ribose by loss of a hydroxy group. Discovered in 1929 by Phoebus Levene, [4] deoxyribose is most notable for its presence in DNA.
L-Ribose Fischer Projection. Ribose is a simple sugar and carbohydrate with molecular formula C 5 H 10 O 5 and the linear-form composition H−(C=O)−(CHOH) 4 −H. The naturally occurring form, d-ribose, is a component of the ribonucleotides from which RNA is built, and so this compound is necessary for coding, decoding, regulation and expression of genes.
Nucleosides are glycosylamines that can be thought of as nucleotides without a phosphate group.A nucleoside consists simply of a nucleobase (also termed a nitrogenous base) and a five-carbon sugar (ribose or 2'-deoxyribose) whereas a nucleotide is composed of a nucleobase, a five-carbon sugar, and one or more phosphate groups.
Ribose Zippers: View of a canonical ribose zipper between two RNA backbones. [33] The ribose zipper is an RNA tertiary structural element in which two RNA chains are held together by hydrogen bonding interactions involving the 2’OH of ribose sugars on different strands. The 2'OH can behave as both hydrogen bond donor and acceptor, which ...
While the sugar-phosphate "backbone" of DNA contains deoxyribose, RNA contains ribose instead. [6] Ribose has a hydroxyl group attached to the pentose ring in the 2' position, whereas deoxyribose does not. The hydroxyl groups in the ribose backbone make RNA more chemically labile than DNA by lowering the activation energy of hydrolysis.
l-Deoxyribose is an organic compound with formula C 5 H 10 O 4. It is a synthetic monosaccharide, a stereoisomer (mirror image) of the natural compound d-deoxyribose. l-Deoxyribose can be synthesized from d-galactose. [3] It has been used in chemical research, e.g. in the synthesis of mirror-image DNA. [4]
The general structure of a ribonucleotide consists of a phosphate group, a ribose sugar group, and a nucleobase, in which the nucleobase can either be adenine, guanine, cytosine, or uracil. Without the phosphate group, the composition of the nucleobase and sugar is known as a nucleoside.
This nucleotide contains the five-carbon sugar deoxyribose (at center), a nucleobase called adenine (upper right), and one phosphate group (left). The deoxyribose sugar joined only to the nitrogenous base forms a Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate.