Search results
Results from the WOW.Com Content Network
The Swiss-model Workspace integrates programs and databases required for protein structure prediction and modelling in a web-based workspace. Depending on the complexity of the modelling task, different modes of use can be applied, in which the user has different levels of control over individual modelling steps: automated mode, alignment mode, and project mode.
Constituent amino-acids can be analyzed to predict secondary, tertiary and quaternary protein structure. This list of protein structure prediction software summarizes notable used software tools in protein structure prediction, including homology modeling, protein threading, ab initio methods, secondary structure prediction, and transmembrane helix and signal peptide prediction.
Modeller, often stylized as MODELLER, is a computer program used for homology modeling to produce models of protein tertiary structures and quaternary structures (rarer). [2] [3] It implements a method inspired by nuclear magnetic resonance spectroscopy of proteins (protein NMR), termed satisfaction of spatial restraints, by which a set of geometrical criteria are used to create a probability ...
OPLS-AA, MMFF, GBSA solvent model, conformational sampling, minimizing, MD. Includes the Maestro GUI which provides visualizing, molecule building, calculation setup, job launch and monitoring, project-level organizing of results, access to a suite of other modelling programs. Proprietary: Schrödinger: MAPS [4] Yes Yes Yes Yes Yes Yes Yes No Yes
Continuous Automated Model EvaluatiOn (CAMEO) is a community-wide project to continuously evaluate the accuracy and reliability of protein structure prediction servers in a fully automated manner. [1] CAMEO is a continuous and fully automated complement to the bi-annual CASP experiment. [2]
Graphical models have become powerful frameworks for protein structure prediction, protein–protein interaction, and free energy calculations for protein structures. Using a graphical model to represent the protein structure allows the solution of many problems including secondary structure prediction, protein-protein interactions, protein-drug interaction, and free energy calculations.
An alpha-helix with hydrogen bonds (yellow dots) The α-helix is the most abundant type of secondary structure in proteins. The α-helix has 3.6 amino acids per turn with an H-bond formed between every fourth residue; the average length is 10 amino acids (3 turns) or 10 Å but varies from 5 to 40 (1.5 to 11 turns).
Combines DNA and Protein alignment, by back translating the protein alignment to DNA. DNA/Protein (special) Local or global: Wernersson and Pedersen: 2003 (newest version 2005) SAGA Sequence alignment by genetic algorithm: Protein: Local or global: C. Notredame et al. 1996 (new version 1998) SAM Hidden Markov model: Protein: Local or global: A ...