Search results
Results from the WOW.Com Content Network
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
Density system unit unit-code symbol or abbrev. notes sample default conversion combination output units Metric: kilogram per cubic metre: kg/m3 kg/m 3: 1.0 kg/m 3 (1.7 lb/cu yd)
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...
Water density calculator Archived July 13, 2011, at the Wayback Machine Water density for a given salinity and temperature. Liquid density calculator Select a liquid from the list and calculate density as a function of temperature. Gas density calculator Calculate density of a gas for as a function of temperature and pressure.
The gram per cubic centimetre is a unit of density in the CGS system, and is commonly used in chemistry. It is defined by dividing the CGS unit of mass, the gram, by the CGS unit of volume, the cubic centimetre. The official SI symbols are g/cm 3, g·cm −3, or g cm −3.
The kilogram per cubic metre (symbol: kg·m −3, or kg/m 3) is the unit of density in the International System of Units (SI). It is defined by dividing the SI unit of mass, the kilogram, by the SI unit of volume, the cubic metre. [1]
The unit used in the US is the foot sea water (fsw), based on standard gravity and a sea-water density of 64 lb/ft 3. According to the US Navy Diving Manual, one fsw equals 0.30643 msw, 0.030 643 bar , or 0.444 44 psi , [ 1 ] [ 2 ] though elsewhere it states that 33 fsw is 14.7 psi (one atmosphere), which gives one fsw equal to about 0.445 psi.
Regular, hexagonal ice is also less dense than liquid water—upon freezing, the density of water decreases by about 9%. [36] [e] These peculiar effects are due to the highly directional bonding of water molecules via the hydrogen bonds: ice and liquid water at low temperature have comparatively low-density, low-energy open lattice structures.