Search results
Results from the WOW.Com Content Network
The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...
The maximum stress criterion assumes that a material fails when the maximum principal stress in a material element exceeds the uniaxial tensile strength of the material. Alternatively, the material will fail if the minimum principal stress σ 3 {\displaystyle \sigma _{3}} is less than the uniaxial compressive strength of the material.
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
Certain material properties of aluminum 2024 have been determined experimentally, such as the tensile yield strength (324 MPa) and the modulus of elasticity (73.1 GPa). [ 6 ] The Euler formula could be used to plot a failure curve, but it would not be accurate below a certain l k {\displaystyle {\frac {l}{k}}} value, the critical slenderness ratio.
The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation. The stress component of this point is defined as yield strength (or upper yield point, UYP for ...
Today we'll do a simple run through of a valuation method used to estimate the attractiveness of Kaiser Aluminum...
Most metals have an -value between 0.10 and 0.50. In one study, strain hardening exponent values extracted from tensile data from 58 steel pipes from natural gas pipelines were found to range from 0.08 to 0.25, [ 1 ] with the lower end of the range dominated by high-strength low alloy steels and the upper end of the range mostly normalized steels.
The Bauschinger effect refers to a property of materials where the material's stress/strain characteristics change as a result of the microscopic stress distribution of the material. For example, an increase in tensile yield strength occurs at the expense of compressive yield strength. The effect is named after German engineer Johann ...