enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. De motu corporum in gyrum - Wikipedia

    en.wikipedia.org/wiki/De_motu_corporum_in_gyrum

    Lastly, Newton attempts to extend the results to the case where there is atmospheric resistance, considering first (Problem 6) the effects of resistance on inertial motion in a straight line, and then (Problem 7) the combined effects of resistance and a uniform centripetal force on motion towards/away from the center in a homogeneous medium ...

  3. De analysi per aequationes numero terminorum infinitas

    en.wikipedia.org/wiki/De_analysi_per_aequationes...

    Composed in 1669, [4] during the mid-part of that year probably, [5] from ideas Newton had acquired during the period 1665–1666. [4] Newton wrote And whatever the common Analysis performs by Means of Equations of a finite number of Terms (provided that can be done) this new method can always perform the same by means of infinite Equations.

  4. Schrödinger–Newton equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger–Newton_equation

    The Schrödinger–Newton equation, sometimes referred to as the Newton–Schrödinger or Schrödinger–Poisson equation, is a nonlinear modification of the Schrödinger equation with a Newtonian gravitational potential, where the gravitational potential emerges from the treatment of the wave function as a mass density, including a term that represents interaction of a particle with its own ...

  5. Newtonian dynamics - Wikipedia

    en.wikipedia.org/wiki/Newtonian_dynamics

    The configuration space and the phase space of the dynamical system both are Euclidean spaces, i. e. they are equipped with a Euclidean structure.The Euclidean structure of them is defined so that the kinetic energy of the single multidimensional particle with the unit mass = is equal to the sum of kinetic energies of the three-dimensional particles with the masses , …,:

  6. Perturbation theory - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory

    Perturbation theory was first devised to solve otherwise intractable problems in the calculation of the motions of planets in the solar system. For instance, Newton's law of universal gravitation explained the gravitation between two astronomical bodies, but when a third body is added, the problem was, "How does each body pull on each?"

  7. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Kepler's laws apply only in the limited case of the two-body problem. Voltaire and Émilie du Châtelet were the first to call them "Kepler's laws". Nearly a century later, Isaac Newton had formulated his three laws of motion. In particular, Newton's second law states that a force F applied to a mass m produces an acceleration a given by the ...

  8. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    This procedure does increase the number of equations to solve compared to Newton's laws, from 3N to 3N + C, because there are 3N coupled second-order differential equations in the position coordinates and multipliers, plus C constraint equations. However, when solved alongside the position coordinates of the particles, the multipliers can yield ...

  9. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details