enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    Points are colored according to the final point of the Bairstow iteration, black points indicate divergent behavior. The first image is a demonstration of the single real root case. The second indicates that one can remedy the divergent behavior by introducing an additional real root, at the cost of slowing down the speed of convergence.

  3. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method fits a parabola, i.e. a second-order polynomial, to the last three obtained points f(x k-1), f(x k-2) and f(x k-3) in each iteration. One can generalize this and fit a polynomial p k,m (x) of degree m to the last m+1 points in the k th iteration. Our parabola y k is written as p k,2 in this notation. The degree m must be 1 or ...

  4. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    Laguerre's method may even converge to a complex root of the polynomial, because the radicand of the square root may be of a negative number, in the formula for the correction, , given above – manageable so long as complex numbers can be conveniently accommodated for the calculation. This may be considered an advantage or a liability ...

  5. Neville's algorithm - Wikipedia

    en.wikipedia.org/wiki/Neville's_algorithm

    In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial.

  6. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point. Polynomial interpolation also forms the basis for algorithms in numerical quadrature (Simpson's rule) and numerical ordinary differential equations (multigrid methods).

  7. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...

  8. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Polynomial curves fitting points generated with a sine function. The black dotted line is the "true" data, the red line is a first degree polynomial, the green line is second degree, the orange line is third degree and the blue line is fourth degree. The first degree polynomial equation = + is a line with slope a. A line will connect any two ...

  9. Durand–Kerner method - Wikipedia

    en.wikipedia.org/wiki/Durand–Kerner_method

    In numerical analysis, the Weierstrass method or Durand–Kerner method, discovered by Karl Weierstrass in 1891 and rediscovered independently by Durand in 1960 and Kerner in 1966, is a root-finding algorithm for solving polynomial equations. [1] In other words, the method can be used to solve numerically the equation f(x) = 0,