Search results
Results from the WOW.Com Content Network
In trees, the phloem is the innermost layer of the bark, hence the name, derived from the Ancient Greek word φλοιός (phloiós), meaning "bark". [3] [4] The term was introduced by Carl Nägeli in 1858. [5] [6] Different types of phloem can be distinguished. The early phloem formed in the growth apices is called protophloem.
Structure of a plant cell. Plant cells are the cells present in green plants, photosynthetic eukaryotes of the kingdom Plantae.Their distinctive features include primary cell walls containing cellulose, hemicelluloses and pectin, the presence of plastids with the capability to perform photosynthesis and store starch, a large vacuole that regulates turgor pressure, the absence of flagella or ...
Monosaccharides, though generally more complex sugars, are made in the "dark" reactions. The term "light" reaction can be confusing as some "dark" reactions require light to be active. [citation needed] Photoassimilate movement through plants from "source to sink" using xylem and phloem is of biological significance.
Sieve elements are specialized cells that are important for the function of phloem, which is a highly organized tissue that transports organic compounds made during photosynthesis. Sieve elements are the major conducting cells in phloem. Conducting cells aid in transport of molecules especially for long-distance signaling.
The phloem is the living portion of the vascular system of a plant, and serves to move sugars and photosynthate from source cells to sink cells. Phloem tissue is made of sieve elements and companion cells, and is surrounded by parenchyma cells. The sieve element cells work as the main player in transport of phloem sap.
Organic molecules such as sugars, amino acids, certain hormones, and messenger RNAs are known to be transported in the phloem through the cells called sieve tube elements. According to the hypothesis, the high concentration of organic substances, particularly sugar, inside the phloem at a source such as a leaf creates a diffusion gradient ...
The sugars synthesized by the plant with sun light are transported by the phloem, which is closer to the lower surface. Aphids and leaf hoppers feed off of these sugars by tapping into the phloem. This is why aphids and leaf hoppers are typically found on the underside of a leaf rather than on the top.
Stems have several main functions: [3] Support for and the elevation of leaves, flowers, and fruits. The stems keep the leaves in the light and provide a place for the plant to keep its flowers and fruits. Transport of fluids between the roots and the shoots in the xylem and phloem. Storage of nutrients. Production of new living tissue.