Search results
Results from the WOW.Com Content Network
Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in ...
{{Information |Description=Lorentz factor as a function of velocity. Graph created with KmPlot, edited with Inkscape. This is well enough, but it takes more than 1000 segments to draw the curve. I simplify it to 4 bézier arcs. |So: 12:53, 6 October 2007: 1,102 × 1,118 (195 KB) Egg: 12:23, 6 October 2007: 1,102 × 1,118 (195 KB) Egg
Below are few ultrarelativistic approximations when .The rapidity is denoted : Motion with constant proper acceleration: d ≈ e aτ /(2a), where d is the distance traveled, a = dφ/dτ is proper acceleration (with aτ ≫ 1), τ is proper time, and travel starts at rest and without changing direction of acceleration (see proper acceleration for more details).
In Minkowski's 1908 paper there were three diagrams, first to illustrate the Lorentz transformation, then the partition of the plane by the light-cone, and finally illustration of worldlines. [8] The first diagram used a branch of the unit hyperbola t 2 − x 2 = 1 {\textstyle t^{2}-x^{2}=1} to show the locus of a unit of proper time depending ...
Relation between the speed and the Lorentz factor γ (and hence the time dilation of moving clocks). Time dilation as predicted by special relativity is often verified by means of particle lifetime experiments. According to special relativity, the rate of a clock C traveling between two synchronized laboratory clocks A and B, as seen by a ...
It may include a rotation of space; a rotation-free Lorentz transformation is called a Lorentz boost. In Minkowski space—the mathematical model of spacetime in special relativity—the Lorentz transformations preserve the spacetime interval between any two events. They describe only the transformations in which the spacetime event at the ...
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry:
Here γ is the composite Lorentz factor, and a and b are 3×1 column vectors proportional to the composite velocities. The 3×3 matrix M will turn out to have geometric significance. The inverse transformations are