Search results
Results from the WOW.Com Content Network
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...
If one of these values is 0, we have a linear factor. If the values are nonzero, we can list the possible factorizations for each. Now, 2 can only factor as 1×2, 2×1, (−1)×(−2), or (−2)×(−1). Therefore, if a second degree integer polynomial factor exists, it must take one of the values p(0) = 1, 2, −1, or −2. and likewise for p(1).
The polynomial P = x 4 + 1 is irreducible over Q but not over any finite field. On any field extension of F 2, P = (x + 1) 4. On every other finite field, at least one of −1, 2 and −2 is a square, because the product of two non-squares is a square and so we have; If =, then = (+) ().
The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.
A Ruth-Aaron pair is two consecutive numbers (x, x+1) with a 0 (x) = a 0 (x+1). The first (by x value): 5, 8, 15, 77, 125, 714, 948, 1330, 1520, 1862, 2491, 3248 (sequence A039752 in the OEIS ). Another definition is where the same prime is only counted once; if so, the first (by x value): 5, 24, 49, 77, 104, 153, 369, 492, 714, 1682, 2107 ...
A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
1 1: 1 2: 2 3: 6 4: 24 5: 120 6: 720 7: 5 040: 8: 40 320: 9: 362 880: 10: 3 628 800: 11: 39 916 800: 12: 479 001 600: 13: 6 227 020 800: 14: 87 178 291 200: 15: 1 307 674 368 000: 16: 20 922 789 888 000: 17: 355 687 428 096 000: 18: 6 402 373 705 728 000: 19: 121 645 100 408 832 000: 20: 2 432 902 008 176 640 000: 25 1.551 121 004 × 10 25: 50 ...